Reactor Metrology for TREAT Experiments

Tommy V Holschuh, Scott M Watson, James T Johnson, David L Chichester

March 2020

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Reactor Metrology for TREAT Experiments

Tommy V Holschuh, Scott M Watson, James T Johnson, David L Chichester

March 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Idaho National Laboratory

Reactor Metrology for TREAT Experiments

Tommy Holschuh Scott Watson Jimmy Johnson David Chichester

Radiochemistry and Nuclear Measurements Idaho National Laboratory

19 February 2020

INL/MIS-20-57521

Overview

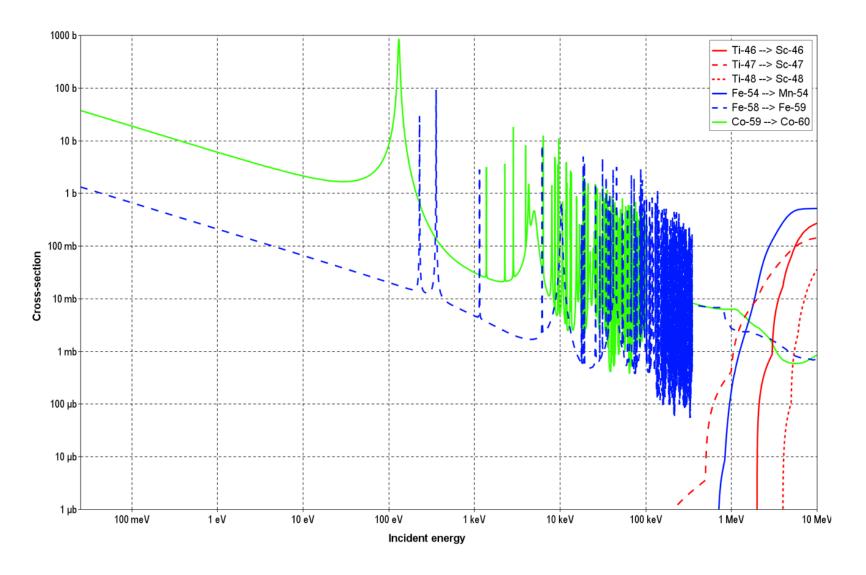
- TREAT Reactor Metrology (RMet) divided into two areas
 - Flux Wires
 - Ti, Fe, Co, Ni, Nb...
 - Fission Wires
 - DU, 19.43% UZr
- Flux wires give information about the neutron spectrum in a location of the reactor
 - Each isotope has different neutron interaction cross sections
 - Show deviations in spectrum compared to simulation
- Fission wires provide number of fissions in a location of the reactor
 - Using mass of wire and reactor energy → Energy Coupling Factor

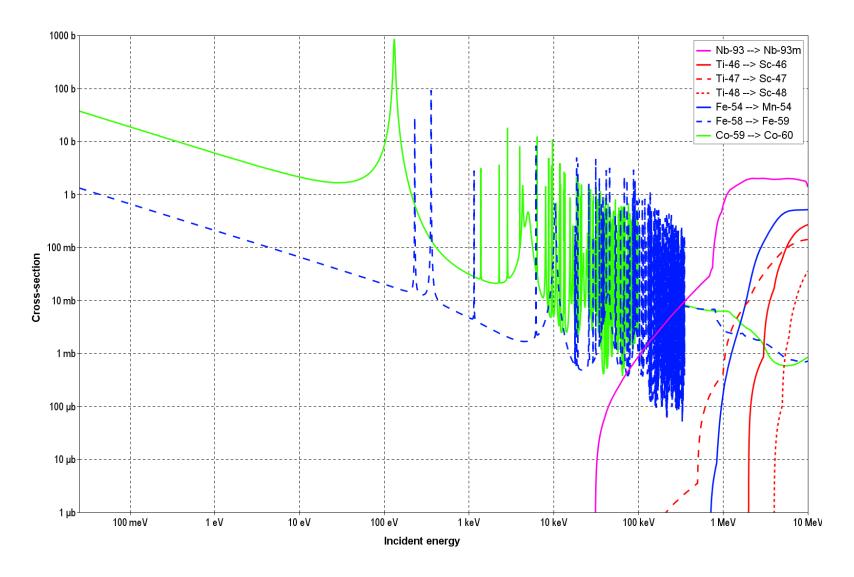
Flux Wires Fission Wires

Fission Wires

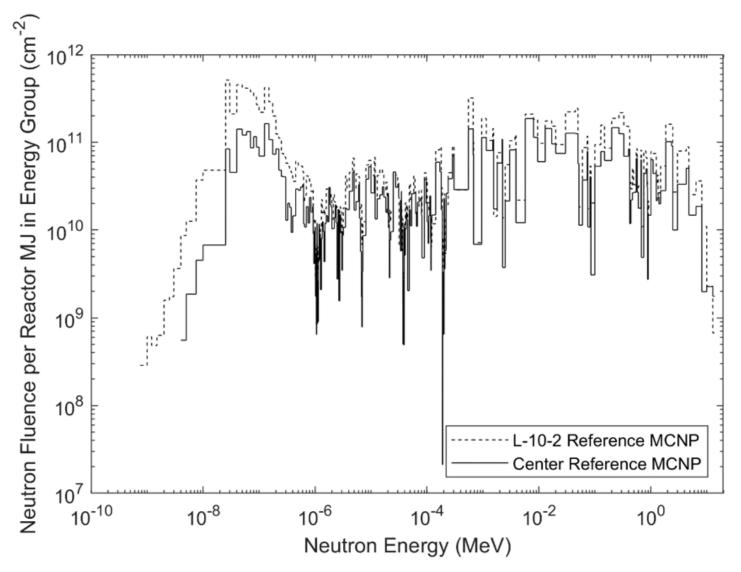
- Objective
 - Determine neutron energy spectrum
- Steps
 - Choose Wire
 - (Jim, Tommy)
 - Perform MCNP simulation to estimate neutron energy spectrum
 - (Jim, Kellen)
 - Irradiate wires in chosen position
 - (Kellen)
 - Count flux wire with detector
 - (Scott, Tommy)
 - Calculate activity for each flux wire
 - (Tommy)
 - Use software to "adjust" MCNP spectrum using calculated activities
 - (Tommy)

Flux Wires - Choose Wire


- Parent nuclide will have cross section of interest
 - n, gamma
 - n, p
 - n, alpha
 - n, n'
 - n, 2n
- Most useful wires would have multiple reactions
- Resulting daughter nuclide must be radioactive
- For gamma spectroscopy, must emit a gamma-ray
 - i.e. Sr-90 is beta only
- Half-life of usable value
 - Desirable to measure nuclide with half-life on order of decay time between irradiation and measurement
- Wire selection may change depending on reactor
 - TREAT is very thermal (which changes with temperature)

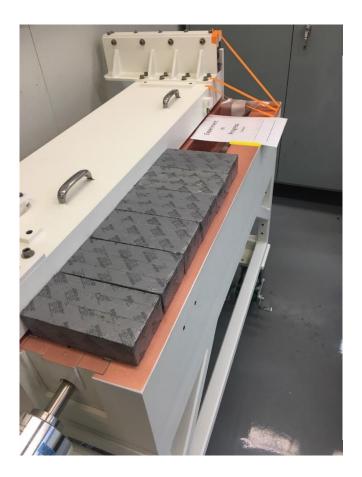

Parent Isotope (Activation Wires)	Density (g/cc)	Natural Isotopic Abundance (%)	Daughter Isotope	Reaction Type
Ti-46		8.25 ± 0.03	Sc-46	Fast (n, p)
Ti-47	4.506	7.44 ± 0.02	Sc-47	Fast (n, p)
Ti-48		73.72 ± 0.03	Sc-48	Fast (n, p)
Fe-54	7.874	5.845 ± 0.035	Mn-54	Fast (n, p)
Fe-58	7.674	0.282 ± 0.004	Fe-59	Thermal (n, γ)
Co-59 (Al-0.1%Co)	8.9 (2.706)	100 (0.1)	Co-60	Thermal (n, γ)

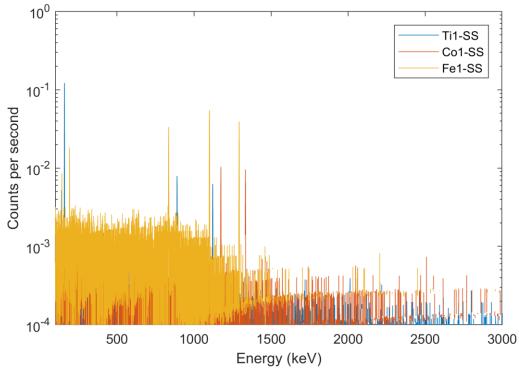
Daughter Isotope	Half Life	Decay Photon Energy (keV)	Absolute Yield (%)
Sc-46	$83.79 \pm 0.04 d$	889.277 ± 0.003	99.984 ± 0.001
SC-40	83.79 ± 0.04 d	1120.545 ± 0.004	99.987 ± 0.001
Sc-47	$3.3492 \pm 0.0006 \ d$	159.381 ± 0.015	68.3 ± 0.4
Sc-48	43.67 ± 0.09 h	983.526 ± 0.012	100.1 ± 0.6
		1037.522 ± 0.012	97.6 ± 0.7
		1312.12 ± 0.012	100.1 ± 0.7
Mn-54	$312.20 \pm 0.20 \ d$	834.848 ± 0.003	99.976 ± 0.001
Fe-59	44.495 ± 0.009 d	1099.245 ± 0.003	56.5 ± 1.8
	44.493 ± 0.009 d	1291.590 ± 0.006	43.2 ± 1.4
Co-60	1925.28 ± 0.14 d	1173.228 ± 0.003	99.85 ± 0.03
	1923.20 ± 0.14 d	1332.492 ± 0.004	99.9826 ± 0.0006



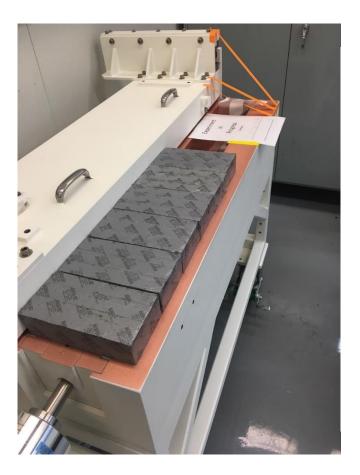
Flux Wires - Perform MCNP Simulation

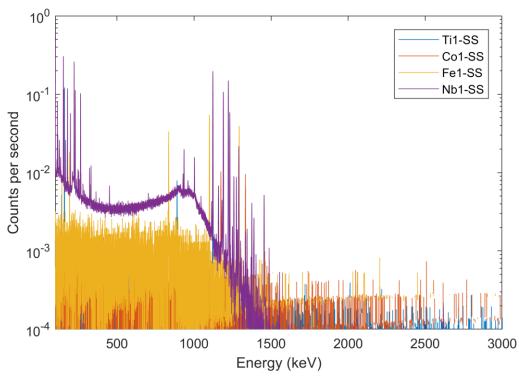
- MCNP neutron tallies separated into energy bins will change depending on position in core
 - Center test position (M8, BUSTER)
 - Coolant channel (SPNDs)
 - Axial location
- Simulation may not accurately capture all phenomenon
 - It does its best
- Steady-state code package
 - Neutron spectrum does not change with time (temperature)
 - Does not incorporate control rod movements during reactor operations

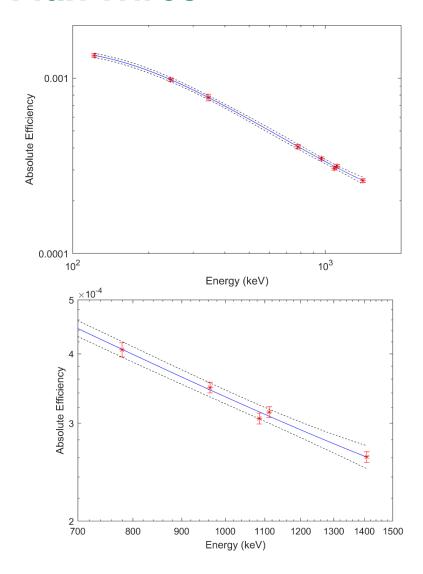


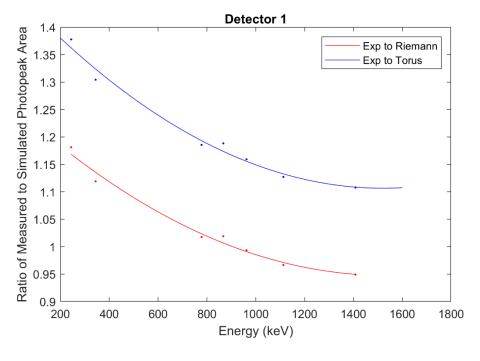

Flux Wires - Calculate Activity

- TREAT Reactor Metrology Lab is located in IRC B5 laboratory
- Consists of one (or more) High-Purity Germanium (HPGe) detectors
- Detectors are well-characterized
 - Calibration checks are performed routinely
- Activity per gram of each irradiated flux wire is calculated from counting of gamma-rays emitted in characteristic peaks
- A = Activity per gram of parent isotope (Bq/g)
- λ = Decay constant (sec⁻¹)
- C = Counts in photopeak for radionuclide
- t_d = Decay time between EOI and start of count (sec)
- η = Quantum yield of gamma-ray per disintegration
- ε = Absolute efficiency of detector at photopeak energy
- g = Self-shielding factor
- m = Mass of parent isotope (g)
- t_r = Real counting time (sec)


$$A = \frac{\lambda C e^{\lambda t_d}}{\eta \varepsilon gm \left(1 - e^{-\lambda t_r}\right)}$$

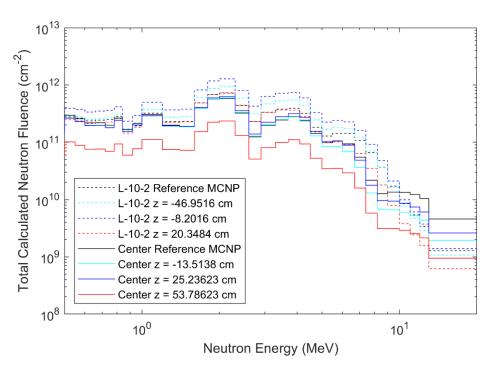


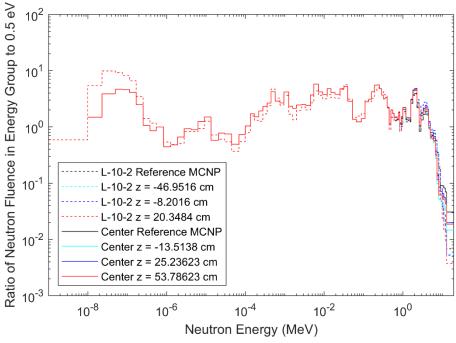




Flux Wires - Calculate Activity

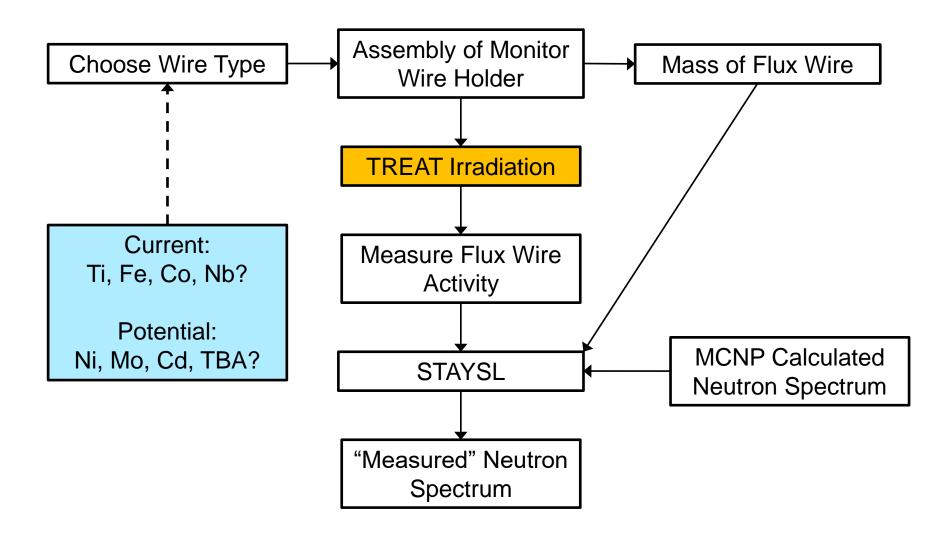
- Largest effort is absolute efficiency for wire
 - Irradiated wire is counted
 - Check source used to calibrate detector (Eu-152)
 - Efficiency of detector as function of energy
 - MCNP model of check source is created, compared (Eu-152)
 - MCNP bias (<5%)
 - MCNP model of irradiated wire is created
 - Wire geometry is different from check source
 - Results are adjusted by MCNP bias
 - Efficiency for irradiated wire's gamma rays in detector measurement is determined
- MCNP wire model must be performed for each unique wire/distance combination





Flux Wires - STAYSL

- PNNL STAYSL software package uses measured wire activities to "adjust" a guessed spectrum
 - Typically, wire activities are reported to end of irradiation (EOI)
 - STAYSL requires saturated activity in its calculation
 - MCNP provides hundreds of neutron groups
 - But typically less than 10 wire reactions are available
 - Solves with cross section data and covariance matrix
 - An underdetermined matrix
- STAYSL is very sensitive to initial MCNP "guess" for spectrum
- What usable information can STAYSL provide?
 - Relative correction for axial position
 - Ratio of thermal/fast fluence
 - Absolute neutron spectrum?

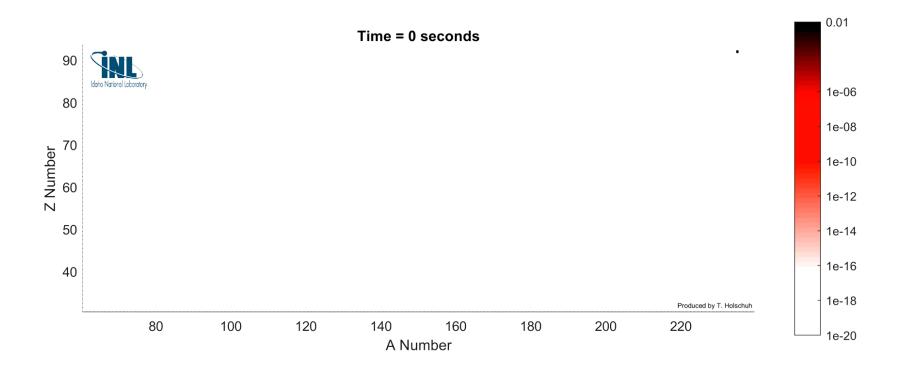


Flux Wires - Conclusion

Fission Wires

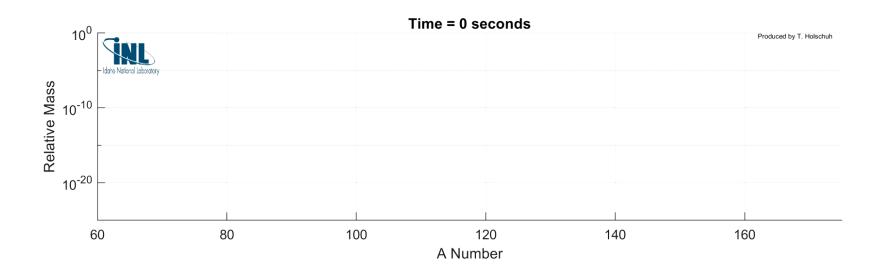
Fission Wires

- Objective
 - Determine total fissions (or coupling factor) for a given test position
- Steps
 - Choose Wire
 - (Jim)
 - Irradiate wires in chosen position
 - (Kellen)
 - Count fission wire with detector
 - (Scott, Tommy)
 - Calculate number of fissions (or coupling factor)
 - (Tommy)



Fission Wires - Choose Wire

- Currently at TREAT, two choices for fission wires
 - Depleted uranium (DU) metal
 - TREAT has a large inventory
 - Low-enriched uranium-zirconium alloy (19.43% enriched UZr)
 - Higher melting point
 - Lower fraction of threshold fission from U-238
 - Inventory limited (legacy material)
- Characterization of fission products from U-235



Fission Wires

Fission Wires

Fission Wires - Calculate Fissions

- Only one fission product is necessary to calculate the number of fissions
 - More fission products allow for a lower uncertainty to be determined
- For gamma spectroscopy, fission products must emit a gamma-ray
- Half-life of usable value
 - Desirable to measure nuclide with half-life on order of decay time between irradiation and measurement
- Avoid gases (I-131, I-132, Xe-135)
- With UZr fission wire, zirconium fission products and their daughters cannot be used
- Uranium has a K-edge around 140 keV, attenuation in this region can be difficult (i.e. Tc-99m)
 - Avoid using gamma-rays less than ~200 keV

Fission Wires

- N = Number of fissions per gram of fissile isotope Activity per gram of parent isotope (Bq/g)
- *C* = Counts in photopeak for radionuclide
- λ = Decay constant (sec⁻¹)
- t_d = Decay time between EOI and start of count (sec)
- F = Time-corrected fission yield
- η = Quantum yield of gamma-ray per disintegration
- ε = Absolute efficiency of detector at photopeak energy
- g =Self-shielding factor
- m = Mass of parent isotope (g)
- t_r = Real counting time (sec)

<i>N</i> =	$Ce^{\lambda t_d}$		
	$\overline{F\eta\varepsilon mg\left(1-e^{-\lambda t_r}\right)}$		

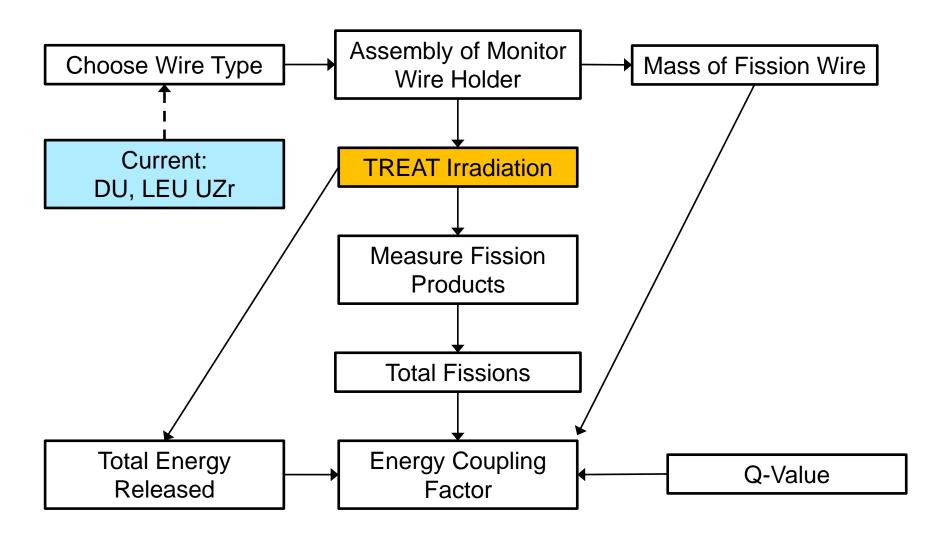
Isotope	Half Life	Photon Peaks of Interest (keV)	Absolute Photon Yield per Disintegration (%)
Zr-95	64.032 ± 0.006 d	756.725 ± 0.012	54.38 ± 0.22
Nb-95	34.991 ± 0.006 d	765.803 ± 0.006	99.808 ± 0.007
Mo-99	65.924 ± 0.006 h	739.500 ± 0.017	12.20 ± 0.16
Tc-99m (Mo-99)	6.0072 ± 0.0009 h	140.511 ± 0.001	89 ± 4
Ru-103	39.247 ± 0.013 d	497.085 ± 0.010	91.0 ± 1.2
I-131	8.0252 ± 0.0006 d	364.489 ± 0.005	81.5 ± 0.8
I-132 (Te-132)	$2.295 \pm 0.013 \text{ h}$ (3.204 ± 0.013 d)	522.65 ± 0.09	16.0 ± 0.5
Ba-140	12.7527 ± 0.0023 d	537.261 ± 0.009	24.39 ± 0.22
La-140	1.67855 ± 0.00012 d	487.021 ± 0.012	45.5 ± 0.6
Nd-147	10.98 ± 0.01 d	531.016 ± 0.022	13.4 ± 0.3

Fission Wires - Calculate Fissions

- Largest effort is absolute efficiency for wire
 - Irradiated wire is counted
 - Check source used to calibrate detector (Eu-152)
 - Efficiency of detector as function of energy
 - MCNP model of check source is created, compared (Eu-152)
 - MCNP bias (<5%)
 - MCNP model of irradiated wire is created
 - Wire geometry is different from check source
 - Results are adjusted by MCNP bias
 - Efficiency for fission product's gamma rays in detector measurement is determined
- MCNP wire model must be performed for each unique wire/distance combination

Fission Wires - Calculate Coupling Factor

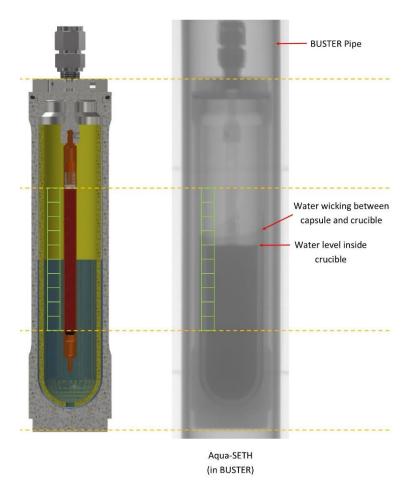
- Energy Coupling Factor (ECF) normalizes the fissions based on wire mass and total reactor energy released
 - Traditionally termed the power coupling factor (PCF)


$$J = fissions \times \frac{MeV}{fission} \times \frac{1.602e - 13 J}{MeV}$$

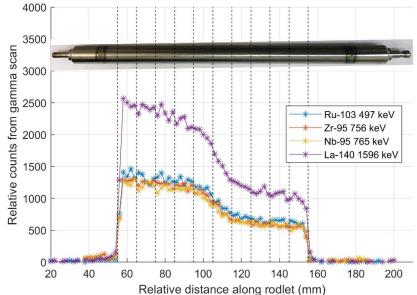
$$ECF \equiv \frac{\text{Energy deposited in sample}}{\left(\text{material mass}\right)\left(\text{Reactor Energy}\right)} = \frac{J}{g - MJ}$$

- Q-value must be determined
 - In TREAT, value is 182 MeV/fission see Jim Parry
 - In fuel, this value could be different (~190-200 MeV)
- ECF is compared to simulation with MCNP and/or appropriate MOOSE package

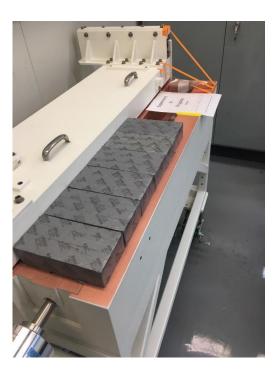
Fission Wires - Conclusion



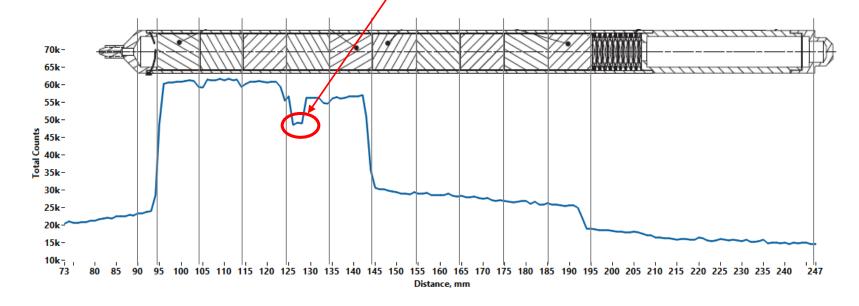
TREAT Reactor Metrology Fuel Measurements


- The methodology for fission wires can be extended to larger fission materials
 - SETH-A
 - ECF calculation
 - Gamma Scan (Jimmy)
 - Aqua-SETH
 - ECF calculation for entire rodlet
 - Gamma Scan half submerged in water ECF by pellet
 - Increase in ECF compared to dry environment
 - M-SERTTA
 - ECF calculation for entire rodlet
 - Gamma Scan change due to enrichment ECF by pellet
 - Changed set-up slightly and can perceive individual pellets within rodlet

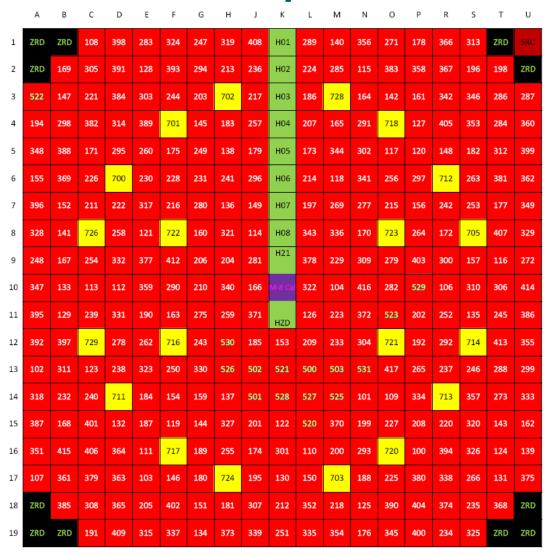
Aqua-SETH Measurements


Pellet	ECF (J-g/MJ)	Unc (k=2)	Ratio to Pellet #9
1	0.828	0.074	2.055
2	0.874	0.079	2.168
3	0.864	0.078	2.143
4	0.825	0.074	2.047
5	0.729	0.064	1.809
6	0.563	0.049	1.396
7	0.448	0.039	1.113
8	0.417	0.036	1.034
9	0.403	0.034	1.000
10	0.366	0.031	0.908

M-SERTTA Measurements



TREAT Reactor Metrology Fuel Measurements


- 4 inches of tungsten shielding + 1.5 +/- .25 mm fuel offset
- 1 mm slit width
- 2700 second dwell
- 1 mm step size
- Start Position 73 mm
- End Position 260 mm

These three points were recorded in a subsequent data set on a different day.

TREAT Core Map

- Red Fuel Assemblies
- Yellow Control Rods
- Green Slotted Assemblies for Hodoscope
- Black Graphite
 Dummy Assemblies
- Purple Test Position